000 | 03191nam a22004935i 4500 | ||
---|---|---|---|
001 | 978-3-319-48936-0 | ||
003 | DE-He213 | ||
005 | 20200712171035.0 | ||
007 | cr nn 008mamaa | ||
008 | 170112s2016 gw | s |||| 0|eng d | ||
020 |
_a9783319489360 _9978-3-319-48936-0 |
||
024 | 7 |
_a10.1007/978-3-319-48936-0 _2doi |
|
050 | 4 | _aQA370-380 | |
072 | 7 |
_aPBKJ _2bicssc |
|
072 | 7 |
_aMAT007000 _2bisacsh |
|
072 | 7 |
_aPBKJ _2thema |
|
082 | 0 | 4 |
_a515.353 _223 |
100 | 1 |
_aBorthwick, David. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aIntroduction to Partial Differential Equations _h[electronic resource] / _cby David Borthwick. |
250 | _a1st ed. 2016. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2016. |
|
300 |
_aXVI, 283 p. 68 illus., 61 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aUniversitext, _x0172-5939 |
|
505 | 0 | _a1. Introduction -- 2. Preliminaries -- 3. Conservation Equations and Characteristics -- 4. The Wave Equation -- 5. Separation of Variables -- 6. The Heat Equation -- 7. Function Spaces -- 8. Fourier Series -- 9. Maximum Principles -- 10. Weak Solutions -- 11. Variational Methods -- 12. Distributions -- 13. The Fourier Transform -- A. Appendix: Analysis Foundations -- References -- Notation Guide -- Index. | |
520 | _aThis modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods. | ||
650 | 0 | _aPartial differential equations. | |
650 | 0 | _aMathematical physics. | |
650 | 1 | 4 |
_aPartial Differential Equations. _0http://scigraph.springernature.com/things/product-market-codes/M12155 |
650 | 2 | 4 |
_aMathematical Applications in the Physical Sciences. _0http://scigraph.springernature.com/things/product-market-codes/M13120 |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319489346 |
776 | 0 | 8 |
_iPrinted edition: _z9783319489353 |
776 | 0 | 8 |
_iPrinted edition: _z9783319840512 |
830 | 0 |
_aUniversitext, _x0172-5939 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-319-48936-0 |
912 | _aZDB-2-SMA | ||
999 |
_c17965 _d17965 |
||
942 | _cebook |