SCE Library
  • Lists
    Public lists PGDE Programme PgCCP PgCHE M.Ed (Science) New Books on Mindfulness New List Books donated by Bhutan Society for the UK Trust Fund Books Donated by Consulate General of India Phuentsholing PGCERT New List 2023 View all
    Your lists Log in to create your own lists
  • Log in to your account
  • Your cookies
  • Search history
  • Clear

About Us
Library Rules
Membership
Collection
Code of Conduct
  • Advanced search
  • Course reserves
  • Tag cloud
  • Libraries
  • Log in to your account

    1. Home
    2. Details for: Quantum Theory for Mathematicians
    Amazon cover image
    Image from Amazon.com
    Normal view MARC view ISBD view

    Quantum Theory for Mathematicians [electronic resource] / by Brian C. Hall.

    By:
    • Hall, Brian C [author.]
    Contributor(s):
    • SpringerLink (Online service)
    Material type: TextTextSeries: Graduate Texts in Mathematics ; 267Publisher: New York, NY : Springer New York : Imprint: Springer, 2013Edition: 1st ed. 2013Description: XVI, 554 p. 30 illus., 2 illus. in color. online resourceContent type:
    • text
    Media type:
    • computer
    Carrier type:
    • online resource
    ISBN:
    • 9781461471165
    Subject(s):
    • Mathematical physics
    • Quantum physics
    • Functional analysis
    • Topological groups
    • Lie groups
    • Physics
    • Mathematical Physics
    • Mathematical Applications in the Physical Sciences
    • Quantum Physics
    • Functional Analysis
    • Topological Groups, Lie Groups
    • Mathematical Methods in Physics
    Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
    • 530.15 23
    LOC classification:
    • QA401-425
    • QC19.2-20.85
    Online resources:
    • Click here to access online
    Contents:
    1 The Experimental Origins of Quantum Mechanics -- 2 A First Approach to Classical Mechanics -- 3 A First Approach to Quantum Mechanics -- 4 The Free Schrödinger Equation -- 5 A Particle in a Square Well -- 6 Perspectives on the Spectral Theorem -- 7 The Spectral Theorem for Bounded Self-Adjoint Operators: Statements -- 8 The Spectral Theorem for Bounded Sef-Adjoint Operators: Proofs -- 9 Unbounded Self-Adjoint Operators -- 10 The Spectral Theorem for Unbounded Self-Adjoint Operators -- 11 The Harmonic Oscillator -- 12 The Uncertainty Principle -- 13 Quantization Schemes for Euclidean Space -- 14 The Stone–von Neumann Theorem -- 15 The WKB Approximation -- 16 Lie Groups, Lie Algebras, and Representations -- 17 Angular Momentum and Spin -- 18 Radial Potentials and the Hydrogen Atom -- 19 Systems and Subsystems, Multiple Particles -- V Advanced Topics in Classical and Quantum Mechanics -- 20 The Path-Integral Formulation of Quantum Mechanics -- 21 Hamiltonian Mechanics on Manifolds -- 22 Geometric Quantization on Euclidean Space -- 23 Geometric Quantization on Manifolds -- A Review of Basic Material -- References. - Index.
    In: Springer eBooksSummary: Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces.  The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
    Tags from this library: No tags from this library for this title. Log in to add tags.
    Star ratings
        Cancel rating. Average rating: 0.0 (0 votes)
    • Holdings ( 0 )
    • Title notes ( 2 )
    • Comments ( 0 )
    No physical items for this record

    1 The Experimental Origins of Quantum Mechanics -- 2 A First Approach to Classical Mechanics -- 3 A First Approach to Quantum Mechanics -- 4 The Free Schrödinger Equation -- 5 A Particle in a Square Well -- 6 Perspectives on the Spectral Theorem -- 7 The Spectral Theorem for Bounded Self-Adjoint Operators: Statements -- 8 The Spectral Theorem for Bounded Sef-Adjoint Operators: Proofs -- 9 Unbounded Self-Adjoint Operators -- 10 The Spectral Theorem for Unbounded Self-Adjoint Operators -- 11 The Harmonic Oscillator -- 12 The Uncertainty Principle -- 13 Quantization Schemes for Euclidean Space -- 14 The Stone–von Neumann Theorem -- 15 The WKB Approximation -- 16 Lie Groups, Lie Algebras, and Representations -- 17 Angular Momentum and Spin -- 18 Radial Potentials and the Hydrogen Atom -- 19 Systems and Subsystems, Multiple Particles -- V Advanced Topics in Classical and Quantum Mechanics -- 20 The Path-Integral Formulation of Quantum Mechanics -- 21 Hamiltonian Mechanics on Manifolds -- 22 Geometric Quantization on Euclidean Space -- 23 Geometric Quantization on Manifolds -- A Review of Basic Material -- References. - Index.

    Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces.  The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

    There are no comments on this title.

    Log in to your account to post a comment.
    • Print
    • Save record
      BIBTEX Dublin Core MARCXML MARC (non-Unicode/MARC-8) MARC (Unicode/UTF-8) MARC (Unicode/UTF-8, Standard) MODS (XML) RIS
    • More searches
      Search for this title in:
      Other Libraries (WorldCat) Other Databases (Google Scholar) Online Stores (Bookfinder.com) ebook (library genesis)

    Exporting to Dublin Core...




    Share
    Visit web site
    Maintained by Academic Resource Center, Samtse College of Education