SCE Library
  • Lists
    Public lists PGDE Programme PgCCP PgCHE M.Ed (Science) New Books on Mindfulness New List Books donated by Bhutan Society for the UK Trust Fund Books Donated by Consulate General of India Phuentsholing PGCERT New List 2023 View all
    Your lists Log in to create your own lists
  • Log in to your account
  • Your cookies
  • Search history
  • Clear

About Us
Library Rules
Membership
Collection
Code of Conduct
  • Advanced search
  • Course reserves
  • Tag cloud
  • Libraries
  • Log in to your account

    1. Home
    2. Details for: Reading, Writing, and Proving A Closer Look at Mathematics /
    Amazon cover image
    Image from Amazon.com
    Normal view MARC view ISBD view

    Reading, Writing, and Proving [electronic resource] : A Closer Look at Mathematics / by Ulrich Daepp, Pamela Gorkin.

    By:
    • Daepp, Ulrich [author.]
    Contributor(s):
    • Gorkin, Pamela [author.]
    • SpringerLink (Online service)
    Material type: TextTextSeries: Undergraduate Texts in MathematicsPublication details: New York : Springer, 2011.Edition: 2nd ed. 2011Description: XIV, 378 p. online resource. 7.48 MBISBN:
    • 9781441994790
    Subject(s):
    • Mathematical logic
    • Mathematical analysis
    • Analysis (Mathematics)
    • Number theory
    • Mathematical Logic and Foundations
    • Analysis
    • Number Theory
    Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
    • 511.3 23 DAE
    Online resources:
    • Click here to access online
    • Ebook
    Contents:
    -Preface. -1. The How, When, and Why of Mathematics -- 2. Logically Speaking -- 3.Introducing the Contrapositive and Converse -- 4. Set Notation and Quantifiers -- 5. Proof Techniques -- 6. Sets -- 7. Operations on Sets -- 8. More on Operations on Sets -- 9. The Power Set and the Cartesian Product -- 10. Relations -- 11. Partitions -- 12. Order in the Reals -- 13. Consequences of the Completeness of (\Bbb R) -- 14. Functions, Domain, and Range.- 15. Functions, One-to-One, and Onto -- 16. Inverses -- 17. Images and Inverse Images -- 18. Mathematical Induction -- 19. Sequences -- 20. Convergence of Sequences of Real Numbers -- 21. Equivalent Sets -- 22. Finite Sets and an Infinite Set -- 23. Countable and Uncountable Sets -- 24. The Cantor-Schröder-Bernstein Theorem -- 25. Metric Spaces -- 26. Getting to Know Open and Closed Sets -- 27. Modular Arithmetic -- 28. Fermat’s Little Theorem -- 29. Projects -- Appendix -- References -- Index.
    In: Springer eBooksSummary: Reading, Writing, and Proving is designed to guide mathematics students during their transition from algorithm-based courses such as calculus, to theorem and proof-based courses. This text not only introduces the various proof techniques and other foundational principles of higher mathematics in great detail, but also assists and inspires students to develop the necessary abilities to read, write, and prove using mathematical definitions, examples, and theorems that are required for success in navigating advanced mathematics courses. In addition to an introduction to mathematical logic, set theory, and the various methods of proof, this textbook prepares students for future courses by providing a strong foundation in the fields of number theory, abstract algebra, and analysis. Also included are a wide variety of examples and exercises as well as a rich selection of unique projects that provide students with an opportunity to investigate a topic independently or as part of a collaborative effort. New features of the Second Edition include the addition of formal statements of definitions at the end of each chapter; a new chapter featuring the Cantor–Schröder–Bernstein theorem with a spotlight on the continuum hypothesis; over 200 new problems; two new student projects; and more. An electronic solutions manual to selected problems is available online.  From the reviews of the First Edition: “The book…emphasizes Pòlya’s four-part framework for problem solving (from his book How to Solve It)…[it] contains more than enough material for a one-semester course, and is designed to give the instructor wide leeway in choosing topics to emphasize…This book has a rich selection of problems for the student to ponder, in addition to "exercises" that come with hints or complete solutions…I was charmed by this book and found it quite enticing.” – Marcia G. Fung for MAA Reviews “… A book worthy of serious consideration for courses whose goal is to prepare students for upper-division mathematics courses. Summing Up: Highly recommended.” – J. R. Burke, Gonzaga University for CHOICE Reviews.
    Tags from this library: No tags from this library for this title. Log in to add tags.
    Star ratings
        Cancel rating. Average rating: 0.0 (0 votes)
    • Holdings ( 0 )
    • Title notes ( 2 )
    • Comments ( 0 )
    No physical items for this record

    -Preface. -1. The How, When, and Why of Mathematics -- 2. Logically Speaking -- 3.Introducing the Contrapositive and Converse -- 4. Set Notation and Quantifiers -- 5. Proof Techniques -- 6. Sets -- 7. Operations on Sets -- 8. More on Operations on Sets -- 9. The Power Set and the Cartesian Product -- 10. Relations -- 11. Partitions -- 12. Order in the Reals -- 13. Consequences of the Completeness of (\Bbb R) -- 14. Functions, Domain, and Range.- 15. Functions, One-to-One, and Onto -- 16. Inverses -- 17. Images and Inverse Images -- 18. Mathematical Induction -- 19. Sequences -- 20. Convergence of Sequences of Real Numbers -- 21. Equivalent Sets -- 22. Finite Sets and an Infinite Set -- 23. Countable and Uncountable Sets -- 24. The Cantor-Schröder-Bernstein Theorem -- 25. Metric Spaces -- 26. Getting to Know Open and Closed Sets -- 27. Modular Arithmetic -- 28. Fermat’s Little Theorem -- 29. Projects -- Appendix -- References -- Index.

    Reading, Writing, and Proving is designed to guide mathematics students during their transition from algorithm-based courses such as calculus, to theorem and proof-based courses. This text not only introduces the various proof techniques and other foundational principles of higher mathematics in great detail, but also assists and inspires students to develop the necessary abilities to read, write, and prove using mathematical definitions, examples, and theorems that are required for success in navigating advanced mathematics courses. In addition to an introduction to mathematical logic, set theory, and the various methods of proof, this textbook prepares students for future courses by providing a strong foundation in the fields of number theory, abstract algebra, and analysis. Also included are a wide variety of examples and exercises as well as a rich selection of unique projects that provide students with an opportunity to investigate a topic independently or as part of a collaborative effort. New features of the Second Edition include the addition of formal statements of definitions at the end of each chapter; a new chapter featuring the Cantor–Schröder–Bernstein theorem with a spotlight on the continuum hypothesis; over 200 new problems; two new student projects; and more. An electronic solutions manual to selected problems is available online.  From the reviews of the First Edition: “The book…emphasizes Pòlya’s four-part framework for problem solving (from his book How to Solve It)…[it] contains more than enough material for a one-semester course, and is designed to give the instructor wide leeway in choosing topics to emphasize…This book has a rich selection of problems for the student to ponder, in addition to "exercises" that come with hints or complete solutions…I was charmed by this book and found it quite enticing.” – Marcia G. Fung for MAA Reviews “… A book worthy of serious consideration for courses whose goal is to prepare students for upper-division mathematics courses. Summing Up: Highly recommended.” – J. R. Burke, Gonzaga University for CHOICE Reviews.

    There are no comments on this title.

    Log in to your account to post a comment.
    • Print
    • Save record
      BIBTEX Dublin Core MARCXML MARC (non-Unicode/MARC-8) MARC (Unicode/UTF-8) MARC (Unicode/UTF-8, Standard) MODS (XML) RIS
    • More searches
      Search for this title in:
      Other Libraries (WorldCat) Other Databases (Google Scholar) Online Stores (Bookfinder.com) ebook (library genesis)

    Exporting to Dublin Core...




    Share
    Visit web site
    Maintained by Academic Resource Center, Samtse College of Education