SCE Library
  • Lists
    Public lists PGDE Programme PgCCP PgCHE M.Ed (Science) New Books on Mindfulness New List Books donated by Bhutan Society for the UK Trust Fund Books Donated by Consulate General of India Phuentsholing PGCERT New List 2023 View all
    Your lists Log in to create your own lists
  • Log in to your account
  • Your cookies
  • Search history
  • Clear

About Us
Library Rules
Membership
Collection
Code of Conduct
  • Advanced search
  • Course reserves
  • Tag cloud
  • Libraries
  • Log in to your account

    1. Home
    2. Details for: Partial Differential Equations
    Amazon cover image
    Image from Amazon.com
    Normal view MARC view ISBD view

    Partial Differential Equations [electronic resource] / by Jürgen Jost.

    By:
    • Jost, Jürgen [author.]
    Contributor(s):
    • SpringerLink (Online service)
    Material type: TextTextSeries: Graduate Texts in Mathematics ; 214Publisher: New York, NY : Springer New York : Imprint: Springer, 2013Edition: 3rd ed. 2013Description: XIII, 410 p. 10 illus. online resourceContent type:
    • text
    Media type:
    • computer
    Carrier type:
    • online resource
    ISBN:
    • 9781461448099
    Subject(s):
    • Partial differential equations
    • Mathematical physics
    • Partial Differential Equations
    • Theoretical, Mathematical and Computational Physics
    Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
    • 515.353 23
    LOC classification:
    • QA370-380
    Online resources:
    • Click here to access online
    Contents:
    Preface -- Introduction: What are Partial Differential Equations? -- 1 The Laplace equation as the Prototype of an Elliptic Partial Differential Equation of Second Order -- 2 The Maximum Principle -- 3 Existence Techniques I: Methods Based on the Maximum Principle -- 4 Existence Techniques II: Parabolic Methods. The Heat Equation -- 5 Reaction-Diffusion Equations and Systems -- 6 Hyperbolic Equations -- 7 The Heat Equation, Semigroups, and Brownian Motion -- 8 Relationships between Different Partial Differential Equations -- 9 The Dirichlet Principle. Variational Methods for the Solutions of PDEs (Existence Techniques III) -- 10 Sobolev Spaces and L^2 Regularity theory -- 11 Strong solutions -- 12 The Regularity Theory of Schauder and the Continuity Method (Existence Techniques IV) -- 13The Moser Iteration Method and the Regularity Theorem of de Giorgi and Nash -- Appendix: Banach and Hilbert spaces. The L^p-Spaces -- References -- Index of Notation -- Index.
    In: Springer eBooksSummary: This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.
    Tags from this library: No tags from this library for this title. Log in to add tags.
    Star ratings
        Cancel rating. Average rating: 0.0 (0 votes)
    • Holdings ( 0 )
    • Title notes ( 2 )
    • Comments ( 0 )
    No physical items for this record

    Preface -- Introduction: What are Partial Differential Equations? -- 1 The Laplace equation as the Prototype of an Elliptic Partial Differential Equation of Second Order -- 2 The Maximum Principle -- 3 Existence Techniques I: Methods Based on the Maximum Principle -- 4 Existence Techniques II: Parabolic Methods. The Heat Equation -- 5 Reaction-Diffusion Equations and Systems -- 6 Hyperbolic Equations -- 7 The Heat Equation, Semigroups, and Brownian Motion -- 8 Relationships between Different Partial Differential Equations -- 9 The Dirichlet Principle. Variational Methods for the Solutions of PDEs (Existence Techniques III) -- 10 Sobolev Spaces and L^2 Regularity theory -- 11 Strong solutions -- 12 The Regularity Theory of Schauder and the Continuity Method (Existence Techniques IV) -- 13The Moser Iteration Method and the Regularity Theorem of de Giorgi and Nash -- Appendix: Banach and Hilbert spaces. The L^p-Spaces -- References -- Index of Notation -- Index.

    This book offers an ideal graduate-level introduction to the theory of partial differential equations. The first part of the book describes the basic mathematical problems and structures associated with elliptic, parabolic, and hyperbolic partial differential equations, and explores the connections between these fundamental types. Aspects of Brownian motion or pattern formation processes are also presented. The second part focuses on existence schemes and develops estimates for solutions of elliptic equations, such as Sobolev space theory, weak and strong solutions, Schauder estimates, and Moser iteration. In particular, the reader will learn the basic techniques underlying current research in elliptic partial differential equations. This revised and expanded third edition is enhanced with many additional examples that will help motivate the reader. New features include a reorganized and extended chapter on hyperbolic equations, as well as a new chapter on the relations between different types of partial differential equations, including first-order hyperbolic systems, Langevin and Fokker-Planck equations, viscosity solutions for elliptic PDEs, and much more. Also, the new edition contains additional material on systems of elliptic partial differential equations, and it explains in more detail how the Harnack inequality can be used for the regularity of solutions.

    There are no comments on this title.

    Log in to your account to post a comment.
    • Print
    • Save record
      BIBTEX Dublin Core MARCXML MARC (non-Unicode/MARC-8) MARC (Unicode/UTF-8) MARC (Unicode/UTF-8, Standard) MODS (XML) RIS
    • More searches
      Search for this title in:
      Other Libraries (WorldCat) Other Databases (Google Scholar) Online Stores (Bookfinder.com) ebook (library genesis)

    Exporting to Dublin Core...




    Share
    Visit web site
    Maintained by Academic Resource Center, Samtse College of Education