SCE Library
  • Lists
    Public lists PGDE Programme PgCCP PgCHE M.Ed (Science) New Books on Mindfulness New List Books donated by Bhutan Society for the UK Trust Fund Books Donated by Consulate General of India Phuentsholing PGCERT New List 2023 View all
    Your lists Log in to create your own lists
  • Log in to your account
  • Your cookies
  • Search history
  • Clear

About Us
Library Rules
Membership
Collection
Code of Conduct
  • Advanced search
  • Course reserves
  • Tag cloud
  • Libraries
  • Log in to your account

    1. Home
    2. Details for: Proofs from THE BOOK
    Amazon cover image
    Image from Amazon.com
    Normal view MARC view ISBD view

    Proofs from THE BOOK [electronic resource] / by Martin Aigner, Günter M. Ziegler.

    By:
    • Aigner, Martin [author.]
    Contributor(s):
    • Ziegler, Günter M [author.]
    • SpringerLink (Online service)
    Material type: TextTextPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2018Edition: 6th ed. 2018Description: VIII, 326 p. online resourceContent type:
    • text
    Media type:
    • computer
    Carrier type:
    • online resource
    ISBN:
    • 9783662572658
    Subject(s):
    • Number theory
    • Geometry
    • Mathematical analysis
    • Analysis (Mathematics)
    • Combinatorics
    • Graph theory
    • Computer science—Mathematics
    • Number Theory
    • Geometry
    • Analysis
    • Combinatorics
    • Graph Theory
    • Mathematics of Computing
    Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
    • 512.7 23
    LOC classification:
    • QA241-247.5
    Online resources:
    • Click here to access online
    Contents:
    Number Theory: 1. Six proofs of the infinity of primes -- 2. Bertrand’s postulate -- 3. Binomial coefficients are (almost) never powers -- 4. Representing numbers as sums of two squares -- 5. The law of quadratic reciprocity -- 6. Every finite division ring is a field -- 7. The spectral theorem and Hadamard’s determinant problem -- 8. Some irrational numbers -- 9. Three times π2/6 -- Geometry: 10. Hilbert’s third problem: decomposing polyhedral -- 11. Lines in the plane and decompositions of graphs -- 12. The slope problem -- 13. Three applications of Euler’s formula -- 14. Cauchy’s rigidity theorem -- 15. The Borromean rings don’t exist -- 16. Touching simplices -- 17. Every large point set has an obtuse angle -- 18. Borsuk’s conjecture -- Analysis: 19. Sets, functions, and the continuum hypothesis -- 20. In praise of inequalities -- 21. The fundamental theorem of algebra -- 22. One square and an odd number of triangles -- 23. A theorem of Pólya on polynomials -- 24. Van der Waerden's permanent conjecture -- 25. On a lemma of Littlewood and Offord -- 26. Cotangent and the Herglotz trick -- 27. Buffon’s needle problem -- Combinatorics: 28. Pigeon-hole and double counting -- 29. Tiling rectangles -- 30. Three famous theorems on finite sets -- 31. Shuffling cards -- 32. Lattice paths and determinants -- 33. Cayley’s formula for the number of trees -- 34. Identities versus bijections -- 35. The finite Kakeya problem -- 36. Completing Latin squares -- Graph Theory: 37. Permanents and the power of entropy -- 38. The Dinitz problem -- 39. Five-coloring plane graphs -- 40. How to guard a museum -- 41. Turán’s graph theorem -- 42. Communicating without errors -- 43. The chromatic number of Kneser graphs -- 44. Of friends and politicians -- 45. Probability makes counting (sometimes) easy -- About the Illustrations -- Index.
    In: Springer eBooksSummary: This revised and enlarged sixth edition of Proofs from THE BOOK features an entirely new chapter on Van der Waerden’s permanent conjecture, as well as additional, highly original and delightful proofs in other chapters. From the citation on the occasion of the 2018 "Steele Prize for Mathematical Exposition" “… It is almost impossible to write a mathematics book that can be read and enjoyed by people of all levels and backgrounds, yet Aigner and Ziegler accomplish this feat of exposition with virtuoso style. […] This book does an invaluable service to mathematics, by illustrating for non-mathematicians what it is that mathematicians mean when they speak about beauty.” From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. ... Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures and beautiful drawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately and the proofs are brilliant. ..." LMS Newsletter, January 1999 "Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection of theorems and their proofs that would undoubtedly be in the Book of Erdös. The theorems are so fundamental, their proofs so elegant and the remaining open questions so intriguing that every mathematician, regardless of speciality, can benefit from reading this book. ... " SIGACT News, December 2011.
    Tags from this library: No tags from this library for this title. Log in to add tags.
    Star ratings
        Cancel rating. Average rating: 0.0 (0 votes)
    • Holdings ( 0 )
    • Title notes ( 2 )
    • Comments ( 0 )
    No physical items for this record

    Number Theory: 1. Six proofs of the infinity of primes -- 2. Bertrand’s postulate -- 3. Binomial coefficients are (almost) never powers -- 4. Representing numbers as sums of two squares -- 5. The law of quadratic reciprocity -- 6. Every finite division ring is a field -- 7. The spectral theorem and Hadamard’s determinant problem -- 8. Some irrational numbers -- 9. Three times π2/6 -- Geometry: 10. Hilbert’s third problem: decomposing polyhedral -- 11. Lines in the plane and decompositions of graphs -- 12. The slope problem -- 13. Three applications of Euler’s formula -- 14. Cauchy’s rigidity theorem -- 15. The Borromean rings don’t exist -- 16. Touching simplices -- 17. Every large point set has an obtuse angle -- 18. Borsuk’s conjecture -- Analysis: 19. Sets, functions, and the continuum hypothesis -- 20. In praise of inequalities -- 21. The fundamental theorem of algebra -- 22. One square and an odd number of triangles -- 23. A theorem of Pólya on polynomials -- 24. Van der Waerden's permanent conjecture -- 25. On a lemma of Littlewood and Offord -- 26. Cotangent and the Herglotz trick -- 27. Buffon’s needle problem -- Combinatorics: 28. Pigeon-hole and double counting -- 29. Tiling rectangles -- 30. Three famous theorems on finite sets -- 31. Shuffling cards -- 32. Lattice paths and determinants -- 33. Cayley’s formula for the number of trees -- 34. Identities versus bijections -- 35. The finite Kakeya problem -- 36. Completing Latin squares -- Graph Theory: 37. Permanents and the power of entropy -- 38. The Dinitz problem -- 39. Five-coloring plane graphs -- 40. How to guard a museum -- 41. Turán’s graph theorem -- 42. Communicating without errors -- 43. The chromatic number of Kneser graphs -- 44. Of friends and politicians -- 45. Probability makes counting (sometimes) easy -- About the Illustrations -- Index.

    This revised and enlarged sixth edition of Proofs from THE BOOK features an entirely new chapter on Van der Waerden’s permanent conjecture, as well as additional, highly original and delightful proofs in other chapters. From the citation on the occasion of the 2018 "Steele Prize for Mathematical Exposition" “… It is almost impossible to write a mathematics book that can be read and enjoyed by people of all levels and backgrounds, yet Aigner and Ziegler accomplish this feat of exposition with virtuoso style. […] This book does an invaluable service to mathematics, by illustrating for non-mathematicians what it is that mathematicians mean when they speak about beauty.” From the Reviews "... Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. ... Aigner and Ziegler... write: "... all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999 "... This book is a pleasure to hold and to look at: ample margins, nice photos, instructive pictures and beautiful drawings ... It is a pleasure to read as well: the style is clear and entertaining, the level is close to elementary, the necessary background is given separately and the proofs are brilliant. ..." LMS Newsletter, January 1999 "Martin Aigner and Günter Ziegler succeeded admirably in putting together a broad collection of theorems and their proofs that would undoubtedly be in the Book of Erdös. The theorems are so fundamental, their proofs so elegant and the remaining open questions so intriguing that every mathematician, regardless of speciality, can benefit from reading this book. ... " SIGACT News, December 2011.

    There are no comments on this title.

    Log in to your account to post a comment.
    • Print
    • Save record
      BIBTEX Dublin Core MARCXML MARC (non-Unicode/MARC-8) MARC (Unicode/UTF-8) MARC (Unicode/UTF-8, Standard) MODS (XML) RIS
    • More searches
      Search for this title in:
      Other Libraries (WorldCat) Other Databases (Google Scholar) Online Stores (Bookfinder.com) ebook (library genesis)

    Exporting to Dublin Core...




    Share
    Visit web site
    Maintained by Academic Resource Center, Samtse College of Education