SCE Library
  • Lists
    Public lists PGDE Programme PgCCP PgCHE M.Ed (Science) New Books on Mindfulness New List Books donated by Bhutan Society for the UK Trust Fund Books Donated by Consulate General of India Phuentsholing PGCERT New List 2023 View all
    Your lists Log in to create your own lists
  • Log in to your account
  • Your cookies
  • Search history
  • Clear

About Us
Library Rules
Membership
Collection
Code of Conduct
  • Advanced search
  • Course reserves
  • Tag cloud
  • Libraries
  • Log in to your account

    1. Home
    2. Details for: Probability Theory A Comprehensive Course /
    Amazon cover image
    Image from Amazon.com
    Normal view MARC view ISBD view

    Probability Theory [electronic resource] : A Comprehensive Course / by Achim Klenke.

    By:
    • Klenke, Achim [author.]
    Contributor(s):
    • SpringerLink (Online service)
    Material type: TextTextSeries: UniversitextPublisher: London : Springer London : Imprint: Springer, 2014Edition: 2nd ed. 2014Description: XII, 638 p. 46 illus., 20 illus. in color. online resourceContent type:
    • text
    Media type:
    • computer
    Carrier type:
    • online resource
    ISBN:
    • 9781447153610
    Subject(s):
    • Probabilities
    • Measure theory
    • Dynamics
    • Ergodic theory
    • Functional analysis
    • Statistical physics
    • Dynamical systems
    • Probability Theory and Stochastic Processes
    • Measure and Integration
    • Dynamical Systems and Ergodic Theory
    • Functional Analysis
    • Complex Systems
    • Statistical Physics and Dynamical Systems
    Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
    • 519.2 23
    LOC classification:
    • QA273.A1-274.9
    • QA274-274.9
    Online resources:
    • Click here to access online
    Contents:
    Basic Measure Theory -- Independence -- Generating Functions -- The Integral -- Moments and Laws of Large Numbers -- Convergence Theorems -- Lp-Spaces and the Radon–Nikodym Theorem -- Conditional Expectations -- Martingales -- Optional Sampling Theorems -- Martingale Convergence Theorems and Their Applications -- Backwards Martingales and Exchangeability -- Convergence of Measures -- Probability Measures on Product Spaces -- Characteristic Functions and the Central Limit Theorem -- Infinitely Divisible Distributions -- Markov Chains -- Convergence of Markov Chains -- Markov Chains and Electrical Networks -- Ergodic Theory -- Brownian Motion -- Law of the Iterated Logarithm -- Large Deviations -- The Poisson Point Process -- The Itˆo Integral -- Stochastic Differential Equations.
    In: Springer eBooksSummary: This second edition of the popular textbook contains a comprehensive course in modern probability theory. Overall, probabilistic concepts play an increasingly important role in mathematics, physics, biology, financial engineering and computer science. They help us in understanding magnetism, amorphous media, genetic diversity and the perils of random developments at financial markets, and they guide us in constructing more efficient algorithms. To address these concepts, the title covers a wide variety of topics, many of which are not usually found in introductory textbooks, such as: • limit theorems for sums of random variables • martingales • percolation • Markov chains and electrical networks • construction of stochastic processes • Poisson point process and infinite divisibility • large deviation principles and statistical physics • Brownian motion • stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in probability theory. This second edition has been carefully extended and includes many new features. It contains updated figures (over 50), computer simulations and some difficult proofs have been made more accessible. A wealth of examples and more than 270 exercises as well as biographic details of key mathematicians support and enliven the presentation. It will be of use to students and researchers in mathematics and statistics in physics, computer science, economics and biology.
    Tags from this library: No tags from this library for this title. Log in to add tags.
    Star ratings
        Cancel rating. Average rating: 0.0 (0 votes)
    • Holdings ( 0 )
    • Title notes ( 2 )
    • Comments ( 0 )
    No physical items for this record

    Basic Measure Theory -- Independence -- Generating Functions -- The Integral -- Moments and Laws of Large Numbers -- Convergence Theorems -- Lp-Spaces and the Radon–Nikodym Theorem -- Conditional Expectations -- Martingales -- Optional Sampling Theorems -- Martingale Convergence Theorems and Their Applications -- Backwards Martingales and Exchangeability -- Convergence of Measures -- Probability Measures on Product Spaces -- Characteristic Functions and the Central Limit Theorem -- Infinitely Divisible Distributions -- Markov Chains -- Convergence of Markov Chains -- Markov Chains and Electrical Networks -- Ergodic Theory -- Brownian Motion -- Law of the Iterated Logarithm -- Large Deviations -- The Poisson Point Process -- The Itˆo Integral -- Stochastic Differential Equations.

    This second edition of the popular textbook contains a comprehensive course in modern probability theory. Overall, probabilistic concepts play an increasingly important role in mathematics, physics, biology, financial engineering and computer science. They help us in understanding magnetism, amorphous media, genetic diversity and the perils of random developments at financial markets, and they guide us in constructing more efficient algorithms. To address these concepts, the title covers a wide variety of topics, many of which are not usually found in introductory textbooks, such as: • limit theorems for sums of random variables • martingales • percolation • Markov chains and electrical networks • construction of stochastic processes • Poisson point process and infinite divisibility • large deviation principles and statistical physics • Brownian motion • stochastic integral and stochastic differential equations. The theory is developed rigorously and in a self-contained way, with the chapters on measure theory interlaced with the probabilistic chapters in order to display the power of the abstract concepts in probability theory. This second edition has been carefully extended and includes many new features. It contains updated figures (over 50), computer simulations and some difficult proofs have been made more accessible. A wealth of examples and more than 270 exercises as well as biographic details of key mathematicians support and enliven the presentation. It will be of use to students and researchers in mathematics and statistics in physics, computer science, economics and biology.

    There are no comments on this title.

    Log in to your account to post a comment.
    • Print
    • Save record
      BIBTEX Dublin Core MARCXML MARC (non-Unicode/MARC-8) MARC (Unicode/UTF-8) MARC (Unicode/UTF-8, Standard) MODS (XML) RIS
    • More searches
      Search for this title in:
      Other Libraries (WorldCat) Other Databases (Google Scholar) Online Stores (Bookfinder.com) ebook (library genesis)

    Exporting to Dublin Core...




    Share
    Visit web site
    Maintained by Academic Resource Center, Samtse College of Education