SCE Library
  • Lists
    Public lists PGDE Programme PgCCP PgCHE M.Ed (Science) New Books on Mindfulness New List Books donated by Bhutan Society for the UK Trust Fund Books Donated by Consulate General of India Phuentsholing PGCERT New List 2023 View all
    Your lists Log in to create your own lists
  • Log in to your account
  • Your cookies
  • Search history
  • Clear

About Us
Library Rules
Membership
Collection
Code of Conduct
  • Advanced search
  • Course reserves
  • Tag cloud
  • Libraries
  • Log in to your account

    1. Home
    2. ISBD view for: Physics of Oscillations and Waves
    Normal view MARC view ISBD view

    Physics of Oscillations and Waves With use of Matlab and Python /

    Vistnes, Arnt Inge.

    Physics of Oscillations and Waves With use of Matlab and Python / [electronic resource] : by Arnt Inge Vistnes. - 1st ed. 2018. - XVIII, 576 p. 273 illus., 257 illus. in color. online resource. - Undergraduate Texts in Physics, 2510-411X . - Undergraduate Texts in Physics, .

    Chapter 1: Introduction -- Chapter 2: Free and damped oscillations -- Chapter 3: Forced oscillations and resonance -- Chapter 4: Numerical methods -- Chapter 5: Fourier analysis -- Chapter 6: Waves -- Chapter 7: Sound -- Chapter 8: Dispersion and surface waves on water -- Chapter 9: Electromagnetic waves -- Chapter 10: Reflection, transmission and polarization -- Chapter 11: Measurements of light, dispersion of light, colours -- Chapter 12: Geometric optics -- Chapter 13: Interference, diffraction -- Chapter 14: Wavelet transformation -- Chapter 15: Coherence, dipole radiation and lasers -- Chapter 16: Skin depth and wave guides.

    In this textbook a combination of standard mathematics and modern numerical methods is used to describe a wide range of natural wave phenomena, such as sound, light and water waves, particularly in specific popular contexts, e.g. colors or the acoustics of musical instruments. It introduces the reader to the basic physical principles that allow the description of the oscillatory motion of matter and classical fields, as well as resulting concepts including interference, diffraction, and coherence. Numerical methods offer new scientific insights and make it possible to handle interesting cases that can’t readily be addressed using analytical mathematics; this holds true not only for problem solving but also for the description of phenomena. Essential physical parameters are brought more into focus, rather than concentrating on the details of which mathematical trick should be used to obtain a certain solution. Readers will learn how time-resolved frequency analysis offers a deeper understanding of the interplay between frequency and time, which is relevant to many phenomena involving oscillations and waves. Attention is also drawn to common misconceptions resulting from uncritical use of the Fourier transform. The book offers an ideal guide for upper-level undergraduate physics students and will also benefit physics instructors. Program codes in Matlab and Python, together with interesting files for use in the problems, are provided as free supplementary material.

    9783319723143

    10.1007/978-3-319-72314-3 doi


    Mechanics.
    Physics.
    Atmospheric sciences.
    Fluids.
    Classical Mechanics.
    Mathematical Methods in Physics.
    Numerical and Computational Physics, Simulation.
    Atmospheric Sciences.
    Fluid- and Aerodynamics.

    QC120-168.85 QA808.2

    531
    • Print
    • Save record
      BIBTEX Dublin Core MARCXML MARC (non-Unicode/MARC-8) MARC (Unicode/UTF-8) MARC (Unicode/UTF-8, Standard) MODS (XML) RIS
    • More searches
      Search for this title in:
      Other Libraries (WorldCat) Other Databases (Google Scholar) Online Stores (Bookfinder.com) ebook (library genesis)

    Exporting to Dublin Core...




    Maintained by Academic Resource Center, Samtse College of Education